EGU20|6-873I

From EBSD to c-axis orientation gradient image to grain map shearing experiments

w935.Euler Color

Procedure

Grain size determinations in Y domain(s)

w935.M|Sr2_|4|_167-th15

w935.MISrI_052_169-th15

Procedure

Segmentation based on c-axis versus full crystal orientation
 Jan Tullis, Brown University (jan_tullis@brown.edu)

Comparison of shear grain sizes with piezometer

2D h(d) \rightarrow stripstar $\rightarrow 3 \mathrm{Dv} \mathrm{\%}$ (D)

EBSD data on CIP piezometer

BHQ piezometer - revisited

Preliminary conclusions

For better resolution, the CIP derived grain size distributions of experimentally deformed BHQ are being re-measured using EBSD maps of the same samples. Samples are from general shear experimen

The c-axis pole figures clearly showed that there are 2 basal and 2 Y maxima symmetrically disposed
about the periphery and the center of the pole figure, respectively - in the 2006 paper, such double maxima were suspected to be artefacts of the CIP method and not discussed any further.
EBSD measurements confirm that the recrystallized grain size (of regime 3) depends on texture: the Y domains yield larger grains, i.e., they deform under lower flow stress than the rest of the sample.

The recrystallized grain size also depends on the type of deformation: rotational versus irrotational. Samples deformed in general shear yield larger grain size / higher flow stress than predicted by the
piezometer. Note, however, that the strain in the coaxial experiments is much lower and hence the fraction of recrystallized grains much smaller than in the shear experiments.

For comparison with the piezometer, all grain sizes are calculated both as RMS of the 2D sections and as the mode of the volume weighted histogram of 3D grains. The latter measure is preferred -it is statistically more
stable and physically more meaningful. However it has no influence on the above findings.

Abstract
GGu

\qquad

 and
 mismex

 and and

